首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   9篇
  国内免费   1篇
测绘学   15篇
大气科学   11篇
地球物理   45篇
地质学   105篇
海洋学   10篇
天文学   32篇
综合类   3篇
自然地理   11篇
  2022年   4篇
  2021年   8篇
  2020年   8篇
  2019年   7篇
  2018年   21篇
  2017年   19篇
  2016年   18篇
  2015年   11篇
  2014年   15篇
  2013年   17篇
  2012年   5篇
  2011年   7篇
  2010年   14篇
  2009年   16篇
  2008年   17篇
  2007年   10篇
  2006年   8篇
  2005年   6篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1984年   1篇
  1977年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有232条查询结果,搜索用时 31 毫秒
71.
Dynamic and vigorous top soil is the source for healthy flora, fauna, and humans, and soil organic matters are the underpinning for healthy and productive soils. Organic components in the soil play significant role in stimulating soil productivity processes and vegetation development. This article deals with the scientific demand for estimating soil organic carbon (SOC) in forest using geospatial techniques. We assessed distribution of SOC using field and satellite data in Sariska Tiger Reserve located in the Aravalli Hill Range, India. This study utilized the visible and near-infrared reflectance data of Sentinel-2A satellite. Three predictor variables namely Normalized Difference Vegetation Index, Soil Adjusted Vegetation Index, and Renormalized Difference Vegetation Index were derived to examine the relationship between soil and SOC and to identify the biophysical characteristic of soil. Relationship between SOC (ground and predicted) and leaf area index (LAI) measured through satellite data was examined through regression analysis. Coefficient of correlation (R 2) was found to be 0.95 (p value < 0.05) for predicted SOC and satellite measured LAI. Thus, LAI can effectively be used for extracting SOC using remote sensing data. Soil organic carbon stock map generated through Kriging model for Landsat 8 OLI data demonstrated variation in spatial SOC stocks distribution. The model with 89% accuracy has proved to be an effective tool for predicting spatial distribution of SOC stocks in the study area. Thus, optical remote sensing data have immense potential for predicting SOC at larger scale.  相似文献   
72.
Classification of different land features with similar spectral response is an enigmatical task for pixel-based classifiers, as most of these algorithms rely only on the spectral information of the satellite data. This study evaluated the performance of six major pixel-based land-use classification techniques (both common and advanced) for accurate classification of the heterogeneous land-use pattern of Jharia coalfield, India. WorldView-2 satellite data was used in the present study. The land-use classification results revealed that Maximum Likelihood classifier algorithm performed best out of the four common algorithms with an overall accuracy of about 84%. The advanced classifiers used in the study were Neural-Net and Support Vector Machine both of which gave excellent results with an overall accuracy of 91% and 95%, respectively. It was observed that use of very high-resolution data is not sufficient for obtaining high classification accuracy, selection of an appropriate classification algorithm is equally important to get better classification results. Advanced classifiers gave higher accuracy with minimal errors, hence, for critical planning and monitoring tasks these classifiers should be preferred.  相似文献   
73.
The prime contribution of this assignment was to examine the hyperspectral remote sensing, based on iron ore minerals identification using spectral angle mapper (SAM) technique. Correlation analyses between field iron contents and environmental variables (soil, water, and vegetation) have been performed. Spectral feature fitting (SFF) and multi-range spectral feature fitting (MRSFF) methods were used for accuracy assessment in extracting iron ore minerals from Hyperion EO-1 data. Spectral inspections as a reference were used in SAM technique for image classification for iron ore minerals: Hematite (24.26%), Goethite (32.98%) and Desert (42.76). Iron ore minerals classification is justified by the United States Geological Survey (USGS) spectral library and field sample points. The regression analysis of USGS and Hyperion reflectance spectra has shown the moderate positive correlation. The regression analyses between iron ore contents and environmental parameters (soil, water, and vegetation) have shown the moderate negative correlation. The examination was significantly effectual in extracting iron ore minerals: Hematite (SFF RMSE?≤?0.51 MRSFF RMSE?≤?0.48), Goethite (SFF RMSE?≤?0.047 MRSFF RMSE?≤?0.438) and Desert (SFF RMSE?≤?0.63 and MRSFF RMSE?≤?0.50); and the MRSFF RMSE histograms indicate the above result likened to a conventional SFF RMSE. MRSFF RMS error result is best because multiple absorption features typically characterize spectral signatures. This analysis demonstrates the potential applicability of the methodology for iron minerals identification framework and iron minerals impact on environmental parameters.  相似文献   
74.
The present study focuses on an assessment of the impact of future water demand on the hydrological regime under land use/land cover (LULC) and climate change scenarios. The impact has been quantified in terms of streamflow and groundwater recharge in the Gandherswari River basin, West Bengal, India. dynamic conversion of land use and its effects (Dyna-CLUE) and statistical downscaling model (SDSM) are used for quantifying the future LULC and climate change scenarios, respectively. Physical-based semi-distributed model Soil and Water Assessment Tool (SWAT) is used for estimating future streamflow and spatiotemporally distributed groundwater recharge. Model calibration and validation have been performed using discharge data (1990–2016). The impacts of LULC and climate change on hydrological variables are evaluated with three scenarios (for the years 2030, 2050 and 2080). Temperature Vegetation Dyrness Index (TVDI) and evapotranspiration (ET) are considered for estimation of water-deficit conditions in the river basin. Exceedance probability and recurrence interval representation are considered for uncertainty analysis. The results show increased discharge in case of monsoon season and decreased discharge in case of the non-monsoon season for the years 2030 and 2050. However, a reverse trend is obtained for the year 2080. The overall increase in groundwater recharge is visible for all the years. This analysis provides valuable information for the irrigation water management framework.  相似文献   
75.
While dealing with slope stability issues, determining the state of stress and the relation between driving force and resisting force are the fundamental deterministic steps. Gravitational stresses affect geologic processes and engineering operations in slopes. Considering this fact, a concept of topo-stress evaluation is developed in this research and used to produce a shallow landslide susceptibility map in a model area. The topo-stress introduced in this research refers to the shear stress induced by the gravitational forces on the planes parallel to the ground surface. Weight of the material on a slope and friction angle of the jointed rock mass are the two fundamental parameters that are considered to govern topo-stress in this study. Considering topo-stress as a main factor for initiating shallow landslides, a GIS-based probabilistic model is developed for shallow landslide susceptibility zonation. An ideal terrain in central Nepal is selected as the study area for this purpose. Two event-based shallow landslide inventories are used to predict accuracy of the model, which is found to be more than 78 % for the first event-landslides and more than 76 % for the second event-landslides. It is evident from these prediction rates that the probabilistic topo-stress model proposed in this work is quite acceptable when regional scale shallow landslide susceptibility mapping is practiced, such as in the Himalayan rocky slopes.  相似文献   
76.
Carbonaceous rocks in the form of graphitic schist and carbonaceous phyllite are the major host rocks of the gold mineralization in Kundarkocha gold deposit of the Precambrian Singhbhum orogenic belt in eastern India. The detection of organic carbon, essentially in the carbonaceous phyllite and graphitized schist within the Precambrian terrain, is noted from this deposit. A very close relationship exists between gold mineralization and ubiquitous carbonaceous rocks containing organic carbon that seems to play a vital role in the deposition of gold in a Precambrian terrain in India and important metallogenetic implications for such type of deposits elsewhere. However, the role played by organic matter in a Precambrian gold deposit is debatable and the mechanism of precipitation of gold and other metals by organic carbon has been reported elsewhere. Fourier transform infrared spectroscopy (FTIR) results and total organic carbon (TOC) values suggest that at least part of the organic material acted as a possible source for the reduction that played a significant role in the precipitation of gold. Lithological, electron probe analysis (EPMA), fluid inclusions associated with gold mineralization, Total Carbon (TC), TOC and FTIR results suggest that the gold mineralization is spatially and genetically associated with graphitic schist, carbonaceous phyllite/shale that are constituted of immature organic carbon or kerogen. Nano-scale gold inclusions along with free milling gold are associated with sulfide mineral phases present within the carbonaceous host rocks as well as in mineralized quartz-carbonate veins. Deposition of gold could have been facilitated due to the organic redox reactions and the graphitic schist and carbonaceous phyllite zone may be considered as the indicator zone.  相似文献   
77.
Empirical correlation between standard penetration resistance (SPT-N) and shear wave velocity measured by seismic downhole techniques are prepared of the alluvial soil of quaternary age for the Kanpur city. The Kanpur city is having seismic threat from Himalaya and it falls in seismic zone III according to seismic zones of India. Standard penetration test as well seismic downhole test has been carried out up to 30 m at twelve different locations of Kanpur city. The measured SPT-N values and shear wave velocity values are used to develop empirical correlation between SPT-N and shear wave velocity. The proposed correlations have been compared with the existing regression equations by various other investigators. It is found that the proposed correlation exhibit good performance (10 % error bar). Also the measured shear wave velocity has been used to prepare spatially distributed contour map of 50, 75 and 100 m/s using ArcGIS-9 software. It is observed that the shear wave velocity values for the northern part of Kanpur city vary from 125 to 825 m/s. In southern part, it is varying from 125 to 500 m/s where as in the central part of the city the shear wave velocity varies from 125 to 375 m/s. The eastern part of the city also shows some variation in shear wave velocity which ranges from 250 to 625 m/s. The western part of the city shows the variation of shear wave velocity from ≤125 to 500 m/s. The soil type of the study area are classified as per NEHRP and new Italian O.P.M.C classification system as B, C and D type soil with having site period of 0.1–0.9 s and Poisson’s ratio varying from 0.1 to 0.4.  相似文献   
78.
Extensive field investigations were carried out for the first time in the meizoseismal area of the great 1950 Assam Earthquake aimed at exploring the paleoseismic history of the NE Indian region through documentation of liquefaction features and radiocarbon (14C) dating. Trenching at more than a dozen locations along the Burhi Dihing River valley and within the alluvial fans adjoining the Brahmaputra and Dibang Rivers resulted in the identification of more than a dozen very prominent liquefaction features (sand dykes, sills, sand blows etc.) as evidences of large to great earthquakes. 14C dating of the organic material associated with some of the features indicates a paleoseismic record of about 500 yrs archived by the sediments in this region. Compelling geological evidence(s) of the great 1950 earthquake are well constrained by 14C dating. Out of the two historically reported seismic events (1548 AD and 1697 AD) from this region, 14C dating could constrain the 1548 AD event though not distinctly. Further studies using combined 14C and OSL dating may better constrain the seismo-chronology of the study region.  相似文献   
79.
A detailed analysis of depositional history of Miocene sediments and various effects which are governed for creation of accommodation space as well as the processes of sedimentation inherent to the depositional system at that period is described in this work. The early Miocene clastic sediments are deposited in prograding environment where sediment supply exceeds the accommodation space available. The accommodation space created due to basin subsidence and source area upliftment due to local and regional tectonic activity in the basin. In the early Miocene time, the Assam shelf major transgression occurred and several minor transgression followed. There was wide spread deposition of the fluvial Tipam sandstones. In Miocene time due to thrust loading and flexure subsidence, accommodation space was created for deposition of the sediments. The Tipam Sandstone is deposited by cyclic deposition of fining upward sequence in a fluvial to brackish water environment of braided river processes. The mechanism of braided rivers is also discussed in which it laterally expanded, leaving sheet like or wedge — shaped deposits of channel and bar complexes preserving only minor amounts of flood plain material.  相似文献   
80.
The cyclic arrangement of lithofacies of the Karharbari Formation of the Damuda Group from a part of the Talchir Gondwana basin has been examined by statistical techniques. The lithologies have been condensed into five facies states viz. coarse-, medium-, fine-grained sandstones, shale and coal for the convenience of statistical analyses. Markov chain analysis indicates the arrangement of Karharbari lithofacies in form of fining upward cycles. A complete cycle consists of conglomerate or coarse-grained sandstone at the base sequentially succeeded by medium-and fine-grained sandstones, shale and coal at the top. The entropy analysis categorizes the Karharbari cycles into the C-type cyclicity, which is essentially a random sequence of lithologic states. Regression analysis undertaken in the present study indicates the existence of sympathetic relationship between total thickness of strata (net subsidence) and number and average thickness of sedimentary cycle and antipathic relationship between number and average thickness of sedimentary cycle. These observations suggest that cyclic sedimentation of the Karharbari Formation was controlled by autocyclic process by means of lateral migration of streams activated by intrabasinal differential subsidence, which operated within the depositional basin and the channels carrying coarse grade clastic sediments, which make the cycles thicker, tend to be more common in the areas of maximum subsidence. Clastic sediments issued from the laterally migrating rivers interrupted the cyclic sedimentation of the Karharbari Formation in many instances.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号